SECOND CARNEGIE INQUIRY INTO POVERTY
AND DEVELOPMENT IN SOUTHERN AFRICA

Housing and health
by
Myra Lipschitz

Carnegie Conference Paper No. 164

Cape Town 13 - 19 April 1984
INDEX

A. INTRODUCTION

B. METHODOLOGY
 (1) Literature Search
 (2) Derivation of Information on Housing in the Western Cape

C. RESULTS

D. DISCUSSION OF RESULTS
 (a) Health: (1) Respiratory Diseases
 (2) Gastrointestinal Diseases
 (3) Morbidity and Mortality
 (4) Growth
 (5) Skin Diseases
 (6) Infectious Diseases
 (b) Housing: (1) Water and Sewage
 (2) Electricity
 (3) Overcrowding
 (4) Internal Environment

E. SUMMARY OF RESULTS:
 SOME IMPLICATIONS FOR HOUSING AND HEALTH IN THE WESTERN CAPE

F. METHODOLOGICAL PROBLEMS IN THE STUDY OF HOUSING AND HEALTH

G. CONCLUSION

H. SEQUENTIAL BIBLIOGRAPHY OF LITERATURE INCLUDED IN THE STUDY

I. ALPHABETICAL BIBLIOGRAPHY
<table>
<thead>
<tr>
<th>Name</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liz Thomson</td>
<td>Formulation and Design of the Literature Search</td>
</tr>
<tr>
<td>Vanessa Watson</td>
<td>Housing Data</td>
</tr>
<tr>
<td>Astrid Wight</td>
<td>The Internal Environment - Ambient Temperature Study</td>
</tr>
<tr>
<td>Tim Dunne</td>
<td>Statistical Problems</td>
</tr>
<tr>
<td>Sue Myrdal</td>
<td>Results Table</td>
</tr>
</tbody>
</table>
ABSTRACT: HOUSING AND HEALTH

An association between housing and health has been acknowledged both in the international literature, and locally, by the Department of Health and Welfare. Despite this, new priorities for housing have been developed, which have the potential to compromise the health of inhabitants further.

Housing is a component of the complex social matrix which determines the health of South Africans, and poor housing conditions are associated with a wide range of diseases. To this end, numerous organisations have become involved in housing struggles as part of a general struggle for a democratic society.

This paper examines the nature of the association between housing and health. Selected aspects of housing are shown to be associated with specific diseases, e.g. inadequate or poor water supply with diarrhoeal disease, overcrowding with respiratory disease, and so forth.

However, housing is just one of a number of socio-economic variables which produce ill-health, and extricating housing from the complex web as a causative factor is shown to be impossible.

A recommendation is made for the need to define minimal housing standards which are compatible with a healthy community.
An association between health and housing has been known since the early days of medicine. Even in this country, its importance was repeatedly stressed in early editions of the South African Medical Journal. In a 1940 edition, M Maister, Medical Officer of Health in Pietermaritzburg, wrote:

It is difficult to obtain a quantitative valuation of the exact relation between housing conditions and mortality or morbidity rates in South Africa ... There is no doubt however, that in numerous ways, the housing of people does to a very important extent influence their health in its physical, emotional and social aspects. It is almost too obvious to repeat that overcrowding will favour the spread of tuberculosis and the other droplet spread infectious diseases that even the infectious respiratory diseases such as pneumonia will be favoured by ill-ventilated dark and damp conditions.

(MAISTER, 1940)

An editorial in a 1945 edition of the same journal again attempted to draw the attention of the medical profession to the significance of the problem of housing:

The importance of good housing cannot be overemphasized. From certain points of view it is even more important than nutrition. The relationship between infectious diseases and housing is not always fully appreciated even by the medical profession. Our South African cities are overcrowded with slums where the poorer classes live under appalling conditions. Not only are large families crowded into a couple of small rooms but the most elementary hygienic needs are lacking. The result is that the adults are disease ridden and the children are infected in early life. The wonder of it all is that quite a number still emerge relatively sound and healthy.

(EDITORIAL, 1945)

Furthermore, the association between health and housing was clearly acknowledged by the present Department of Health when, in drawing up a new plan for the organisation of South Africa's health services (The National Health Services Facilities Plan), housing was accorded first level priority:

everybody needs drinking water, food, a home and services to help with the disposal of sewage and work to maintain a complete basic level of minimal health.

(quoted in STEIN, 1981)

Nonetheless, over the last two years the Department of Community Development has completely re-orientated its approach to the provision of low income housing. As a result of cutbacks in finance available for housing and a desire to withdraw from its politically exposed role as sole landlord to the working classes, expenditure on low income housing has been drastically cut. Responsibility for its provision has been handed over to the private sector and the individual.

In toto, the new policy package comprises the following:

(i) The state will in future only be responsible for housing those earning under R150 per month, and the units will be built to much lower standards
(ii) Council tenants will be expected to purchase their houses. Those who do not will face massive rent increases.

(iii) All new housing for those earning over R150 per month will be in the form of self-help schemes, serviced plots or units constructed by utility companies and the private sector.

The current low income housing situation in Cape Town (and elsewhere in the country) is critical; there is a huge housing backlog, serious overcrowding and for many tenants, rents which are beyond their means. Under the new policy, these problems will be greatly exacerbated. The lowered standards in state-provided units (which will in future be built without electricity, floor finishes, internal painting, fencing or washing lines) as well as the inability of the lower income groups to house themselves without state assistance, have serious implications for general standards of health. This is particularly the case when taken together with problems such as rising unemployment and soaring living costs. The already high prevalence of ill-health is likely to become worse.

Housing, of course, cannot be seen in isolation as a cause of ill-health. The effects of housing in determining the health status of a population can only be viewed against the complex social conditions (social class, employment, education, nutrition, accessibility of health care facilities, etc) which exist. One must be cautious in attributing deteriorating health status to housing alone.

Nevertheless, confronted in this country by a range of diseases that are clearly rooted in a social matrix in which inadequate housing is an important component, numerous progressive organisations and individuals have become involved in housing struggles as part of a general struggle for a democratic society. While improved housing alone cannot ameliorate health, poor housing conditions are associated with certain diseases and therefore improved housing becomes a necessary, if not sufficient prerequisite in the reduction of these diseases.

The object of our study was to investigate the precise nature of the association between housing and health; and in doing so, provide material which could possibly be used to substantiate demands for better housing (See Table: Housing Issues in the Community). In the context of the impending decline of building standards, such demands become extremely urgent.

Because resources were limited, it was not possible to undertake primary epidemiological research in order to achieve our objectives. Since much headway has already been made in unravelling the complexities of the association, we decided that a literature search could profitably be used to clarify the housing-health linkage and to find out which parameters of housing and of health respectively have been clearly correlated.
<table>
<thead>
<tr>
<th>Issue</th>
<th>Areas</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generally Poor Housing</td>
<td>Guguletu</td>
<td>July 1981</td>
</tr>
<tr>
<td>Conditions</td>
<td>Elsies River</td>
<td>November 1981</td>
</tr>
<tr>
<td>- Cracked walls</td>
<td>Hout Bay</td>
<td>December 1981</td>
</tr>
<tr>
<td>- Draughts</td>
<td>Parkwood</td>
<td>December 1981</td>
</tr>
<tr>
<td>- Damp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No electricity</td>
<td>Valhalla Park</td>
<td>October, 1981</td>
</tr>
<tr>
<td></td>
<td>Bishop Lavis</td>
<td>Oct/Nov, 1981</td>
</tr>
<tr>
<td></td>
<td>Cemenddam</td>
<td>December, 1982</td>
</tr>
<tr>
<td></td>
<td>Bishop Lavis</td>
<td>December, 1982</td>
</tr>
<tr>
<td></td>
<td>Valhalla Park</td>
<td>December, 1982</td>
</tr>
<tr>
<td>No maintenance</td>
<td>10 areas</td>
<td>July, 1981</td>
</tr>
<tr>
<td></td>
<td>Bonteheuvel</td>
<td>November 1981</td>
</tr>
<tr>
<td></td>
<td>Bonteheuvel</td>
<td>December, 1981</td>
</tr>
<tr>
<td>Bucket Toilets</td>
<td>Elsies River</td>
<td>October 1981</td>
</tr>
<tr>
<td>Blocked Drains</td>
<td>Kewtown</td>
<td>August, 1982</td>
</tr>
<tr>
<td>Rents</td>
<td>All areas</td>
<td>December 1981</td>
</tr>
</tbody>
</table>

(Ref: Grassroots Community Newspaper, July 1981 - December 1982)

HOUSING ISSUES IN THE COMMUNITY
This work was done in association with another group of researchers who provided some statistical and descriptive evidence of the existing housing conditions in the Western Cape. Their information was used to determine which of the correlations found in the literature are potentially applicable to local conditions and, conversely, how local conditions at present can be shown in some measure, to be indicators of the present and future health status of the population concerned.

B: METHODOLOGY

1. Literature Search

(a) Derivation of literature: Only studies done in the past twenty years (i.e. since 1963) were sought. There were two reasons for this:

(ii) A review of all studies done on the relationship between health and housing was quantitatively beyond the scope of our study.

Two sources were used to derive a bibliography of potentially relevant literature:

(i) "Housing, the Housing Environment and Health: An annotated Bibliography" A.E. Martin, F. Kaloyanova, S Mazlanka, Geneva: WHO, 1976

(ii) An off-line bibliographic citation list generated by MEDLARS II - a medical information dissemination service run by the Institute for Medical Literature. The bibliography generated was based on a request for literature on:

- HOUSING (key word) and crowding, sanitation, heating, accidents (home), morbidity, hygiene, public health.

(b) Selection of literature from the bibliography

This was divided into a primary and secondary selection:

(i) Primary Selection: Seven criteria were used for the initial selection from the bibliographies:

- only studies published in 1963 or later were considered;
- only articles in English were considered;
- only journals available in South Africa were considered;
- only studies of housing parameteres relevant to South Africa were considered e.g. studies on the effects of formaldehyde on health were excluded since formaldehyde is not used for building in this country;
- only studies of health parameters relevant to South Africa were considered;
- only studies of a sound epidemiological nature were considered i.e. reviews, policy documents, opinion papers, etc., were not included;
- only studies concerning the internal environment were considered i.e. all aspects of the external environment including air pollution were not considered.

In addition to these criteria, we decided to exclude a number of parameters which
seemed to by beyond the practical scope of this literature search. Each of these problems constitute an area of research on its own, and the literature dealing with their effects on health is too vast and diverse to include. Included here are:

- food, its effect on health
- asbestos, its effect on health
- the relationship between housing and mental health (this includes numerous studies dealing with the effects of high-rise buildings on the mental well-being of their occupants)

(ii) **Secondary Selection:** The studies selected from the bibliographical sources by the criteria described above were then carefully scrutinised and finally assessed for inclusion or exclusion according to a standard checklist of variables. The checklist used is included in the report as an Appendix.

In each case, the bibliography cited at the end of the study was scrutinised, and any studies that had not been included in the original source bibliographies and which conformed to the criteria described in section (1) were noted and sought.

(2) **Derivation of Information on Housing in the Western Cape**

(a) **Comparative Housing Study**
In April 1983 students of the School of Architecture, UCT, conducted a standardised survey of eight prototype working class houses. The houses were located in Lotus River and Nyanga and included four row houses, two semi-detached houses, one maisonette and one three-storey walk-up. They were selected to represent the commonest housing types.

The exercise was designed as a pilot study to look at thermal environment i.e. it was intended to pilot the method rather than to produce generalisable data.

(b) **Local Housing Conditions**
Statistics on general housing conditions in metropolitan Cape Town were derived from the Divisional Council data bank and from the Cape Town City Council's Technical Management Services department. These statistics covered electricity supply, water supply, sewage and toilet conditions.
RESULTS

Correlations Shown in the Literature

<table>
<thead>
<tr>
<th></th>
<th>Respiratory</th>
<th>Gastro-intestinal</th>
<th>Mortality/morbidity</th>
<th>Growth</th>
<th>Skin disease</th>
<th>Infectious</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crowding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% households > 6 people</td>
<td>2 2 2 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% persons > 1 room</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% persons/room</td>
<td>24</td>
<td>24 1/2</td>
<td>21 23 24 26 25 26 26 25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>persons/bed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piped (lit. of)</td>
<td>11 9</td>
<td>19 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumption (L/person)</td>
<td>9 12</td>
<td>10 8/12</td>
<td>20 26 26 26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well</td>
<td>9 9</td>
<td>8 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private tap / (sink of)</td>
<td>9 9</td>
<td>12 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public tap</td>
<td>12 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>River</td>
<td>9 11</td>
<td>10 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toilet/Sewage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toilet</td>
<td>24 9/10 11 10</td>
<td>8/12 16 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City sewage</td>
<td>11 10</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Septic tank</td>
<td>11 10</td>
<td>9/12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bucket</td>
<td>9 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pit</td>
<td>9 11</td>
<td>10 8/12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sanitation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Available bathroom</td>
<td>24 10</td>
<td>10 10</td>
<td>19 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed bath/showers</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sink/basin</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hot water</td>
<td>24 16</td>
<td>16 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial</td>
<td>2 1</td>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mud earth beaten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal Environment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood burning</td>
<td>3/4 3/4 4 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas burning (cooker)</td>
<td>5 5 4 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smokes outlet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative humidity</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draughts/cold</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>House Structure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bricks with drainage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bricks with no drainage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mud bricks with no drainage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level above street</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draughts and cold</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composite Index</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crowding = People/room</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Supply/facilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermint = Present/not</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sewage = Disposal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garbage = Disposal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure = Determine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes
- Nos: refer to sequential bibliography
- " : inverse relationship
- 19: Indicates a note or reference number
DISCUSSION OF RESULTS

(a) HEALTH

1. Respiratory Diseases

Both overcrowding and pollution of the internal environment (i.e. inadequate ventilation and pollution) were shown to predispose towards respiratory disease.

OVERCROWDING: In an exploratory study done in 1983 to analyse a period covering four respiratory syncitial virus epidemics and assess the factors affecting spread of infection, overcrowding (defined as a % households with more than six people) was shown to be positively correlated with the incidence of upper respiratory tract infections, croup, bronchitis and pneumonia (2).

Further evidence for a positive correlation between the incidence of bronchitis and overcrowding was shown in a longitudinal study done to examine the relationship between housing conditions and children's health (24). (Here the overcrowding index was defined as number of person per room). In this study, too, inadequate access to amenities (i.e. lack of a bathroom, hot water and indoor lavatory) was also shown to be linked to the incidence of bronchitis.

FUMES AND SMOKE POLLUTION OF THE INTERNAL ENVIRONMENT: One of the most complex studies with respect to the effects of housing on health was that done in a series by Media, Florey, Altman and Swan (5a). Beginning in 1973, they studied the association between gas cooking in the household and the incidence of respiratory disease amongst a population of British children. Using a control group of children who lived in homes where electricity was used for cooking, they showed a significant correlation between the incidence of respiratory symptoms of disease (in both boys and girls) and gas cooking in the home. The agents responsible for this association are the emissions from gas cookers - NO, CO and small amounts of CH\(_2\) and other hydrocarbons.

A follow-up study was conducted in 1979 and the conclusion not only supported the results of the 1973 study, but showed the association to be independent of age, sex, social class, the number of cigarette smokers in the home and latitude (5b). In a later study done in 1979 temperature and relative humidity were also studied as variables and the authors concluded that the prevalence of respiratory conditions such as bronchitis, URTI or cough, tended to be highest in homes with high levels of NO and a high relative humidity. (5c).

In another study, which examined the effects of smoke pollution in the dwellings of children admitted to hospital with bronchopneumonia, the noxious fumes mentioned above were again shown to be implicated in the generation of respiratory disease (4). The
The author concluded that exposure to CO results in generalised systemic effects and that exposure to SO, NO, and benzene results in bronchial irritation which predisposes to upper and lower respiratory tract infections including bronchitis and broncho-pneumonia.

Woodheating as an alternative to electricity or gas in the home was also shown in this study to produce an internal environment which predisposes to respiratory disease i.e. higher death rates from bronchial diseases was found to be associated with residence in which there was poor ventilation on woodburning stoves, especially during the rainy season when people cooked indoors. The study concluded that in well-planned and approved housing with functional chimneys or electric cooking facilities, one finds a decreased mortality from bronchitis, bronchiditis and pneumonia. In overcrowded conditions where cooking on woodburners takes place indoors, there is an increased mortality.

TEMPERATURE AND RELATIVE HUMIDITY: Since 1973 when Blackley reported that after breathing cultures of specific moulds he experienced a "bronchial catarrh which unfitted me for duty" (30) numerous investigators have studies the relationship between moulds and allergic symptoms. In a definitive study on the relationship between asthma and the house dust mite (Dermatophagoides pheronyssinus) Spieksma showed that the mite achieved optimal growth at a temperature of more than 25°C and in a relative humidity of more than 45% and that concentration of the mite increases with increased activity in the home (6). This would suggest that for susceptible individuals the incidence of asthma increases in hot humid and overcrowded conditions.

Among the other factors responsible for the incidence of allergic asthma, airborne spores have been implicated (31). These have been shown to be generated from fungi that grow in moist areas of the home and that damage from breaks in water lines, wet carpets or wet floors all produce an environment highly conducive to fungi. Such conditions are associated with structurally deteriorated buildings.

AREA OF RESIDENCE: Finally, the incidence of chronic respiratory disease has been shown to be associated with the area of residence (1). In a retrospective study of children resident in four respective areas of Kent, a decreased expiratory flow rate (as measured by a Wright Pak Flow Meter and indicating integrity of pulmonary function) was positively correlated with living in (or near) an industrial area in homes where hot water, a fixed bath and/or taps were lacking.

(2) Gastrointestinal Diseases
As can be seen by the clustering of correlations on the table, investigators have shown numerous associations between the incidence of G.I.T. disease and housing — more specifically, three parameters of housing: water supply, toilet/sewage and
SUBSTANDARD HOUSING: Diarrhoeal disease has been shown to be positively correlated with poor housing conditions in at least five separate studies (8,10,12,14,15). In a cross-sectional study done in Panama to evaluate the role of socio-environmental conditions on a group of infants with diarrhoeal disease, and to determine whether the type of housing influences the prevalence of certain bacteria, sanitation, water supply and sewage were shown to influence the incidence of Salmonella, shigella and e. coli infections (8). These enterobacterial pathogens were found in 6 to 10% of children living in substandard dwellings, while none were found in children living in high standard housing.

WATER AND SANITATION: Research in the United States of America found that convenient access to adequate quantities of water for personal hygiene was related to the reduction of shigellosis (13) while in Costa Rica, reduction in the incidence of diarrhoea was related to a good level of sanitation i.e. piped water was shown to decrease the amount of infection with enteropathogenic organisms. (10) In this same study, a bathing facility was also shown to be necessary in order to obtain the best effect of piped water.

In another study the formation of aggregated measures of acute morbidity by means of frequency distributions, identified diarrhoeal disease in infants and young preschool children as a morbidity problem in an urban area of a developing country (12). Analysis of variation by means of the THAID method indicated that household characteristics with the strongest predictive power include several variables which may have a causal relationship with diarrhoeal disease. These include: type of floor (expressing quality of housing and ranging from bare ground to wood and tiles) source of water; crowding; latrine standard; and water consumption (litres per person per day). With regard to the latter, hygienic baths and accessibility of water both play important parts in the water-disease equation and therefore the quantity and convenient access to it are important factors.

This conclusion was substantiated by the findings of another team of investigators who, after a longitudinal study done in four Venezuelan villages, concluded that sanitary measures are of the greatest importance in the reduction of diarrhoea (15). Of the sanitary measures than can be taken the provision of unlimited amounts of good water seems to be correlated with the most important reduction in diarrhoea.

The importance of readily available water as well as other factors of sanitation was yet again demonstrated in cross-sectional studies done in seven different countries by the WHO Diarrhoeal Diseases Advisory Team (14). An analysis of their data showed that whereas basic sanitation adds only a little to the reduction of the incidence of diarrhoea, complete sanitation can reduce it markedly.

In a cross sectional study of Nigerian children, where the presence of ascaris
lumbricoides, hookworm, stecoralis and malarial parasitaemia were used as health indicators, it was shown that the prevalence of the ova of intestinal parasites is associated with the sanitary conditions of the immediate environment, source of water (pipe borne or wells or streams), the type of latrine (water, pit or bucket) and also the availability of dining facilities (9). In this study, however, the author was unable to separate adequately, the effects of housing from other factors.

FLOORS: The reduction of ascaris lumbricoides and hookworm infection was shown in a separate study to be associated with durable floors (10). Cement or other finished floors are more easily kept free of and dust and are generally associated with cleaner living and a reduced prevalence of the parasites. In this study as reduction in the prevalence of ascaris was also shown to be correlated with the presence of a flush toilet (as opposed to a septic tank, pit privy or no facility for excreta disposal).

TOILET: Latrine type has also been shown to be associated with the prevalence of amoebiosis (11). In a cross-sectional study done in India in which employees of an educational institute living inside the campus were compared with employees living outside, the investigators firstly determined the prevalence of amoebiosis (defined as the excretion by an individual of Entamoeba histolytica in any form). They then went on to determine the ratio of cases to carriers, and investigate the circumstances under which carriers developed symptoms. Inefficient latrines (or none at all) and unsafe water was shown to be associated with an increased prevalence of the parasite.

3. Morbidity and Mortality
Seven studies included in this review have been grouped into a general category of mortality and morbidity. As shown on the table, association between morbidity, mortality and a whole range of housing parameters have been demonstrated.

The incidence of child mortality was shown in three separate studies to be influenced by housing quality. Brennan and Lancashire (16) analysed British National Census data for 1971 and concluded that mortality in the first five years of life increased with increased crowding (% houses with more than 1.5 persons per habitable room) and inadequate amenities (i.e. no hot water, bath or inside toilet). This study gave weight to an earlier study of national census data
which mortality rates for children were examined and analysed in relation to a number of social indices (18). The authors of the study concluded that amongst a number of factors overcrowding is an important determinant of childhood mortality.

Infant mortality rates have been shown in another study to be associated with poor quality of water supply and the absence of a toilet (19).

Poor housing, overcrowding, loneliness, family breakdown, personal disability and social instability were all shown to be correlates of excess mortality in a study done in Massachusetts (21). Multiple unit dwellings, substandard housing and overcrowding were included in the 76 significant correlations with the extremely high mortality rates found in the 39 areas studied.

A clear linkage between housing and general morbidity was found in a study done in South Dos Palos, California (19). To look at the effects of improved housing on health, the investigators conducted a cohort study of 81 families from substandard housing who were rehoused. Crowding, water supply, sewage, garbage disposal, structural deficiencies and the presence or absence of vermin were included as variables in a compound housing index.

Consideration of changes in the cost of medical services and the "propensity of people to seek medical attention" were factors included as checks before the authors concluded that the decreased morbidity found after rehousing was a result of the better quality of housing.

This association (between morbidity and housing quality) was again demonstrated in an analytic survey done in Copenhagen (20). In contrast to many other studies which have shown a relationship between housing and health without controlling for other socio-economic variables, this study set out to investigate the effect of 109 social, medical, housing and hygienic factors on the morbidity of a sample population. Dividing the population into age-specific categories (1-6 years, 7-18 years and more than 19 years) the investigators showed a relationship between morbidity and amongst other variables the quality of housing (as determined by size, water and bathroom facilities, drafts and cold, heating and level of dwelling above the ground.

4. Growth
The relationship between housing conditions and the physical development of children was studied in a cohort of English, Welsh and Scottish children (24). Their morbidity (respiratory disease, headaches and general ill-health) and their height (used as an index of physical development) were studied in relation to crowding, access to amenities (i.e. whether a household has a bathroom, hot water and indoor toilet) and to tenure. Although the investigators concluded that contrary to expectations the relationships were mostly weak, a strongly positive correlation was found between crowding and the rate of growth of children. (Other correlations shown in the study were discussed under "respiratory diseases".)

Height quotient (i.e. height age as a percentage of chronologic age) was shown in another study to be affected by crowding (23). In this case the population studied consisted of severely malnourished infants and children. The relationship between a depressed height quotient and increased numbers of persons per room or per bed was shown against a control group of children who, although equally malnourished, came from less crowded home environments.

5. Skin Diseases
An increased incidence of skin disease has been shown to be associated with crowded conditions, a water supply that is poor in quality or quantity, and structural inadequacies in the housing.

OVERCROWDING: Overcrowding for sleeping space (as defined by the 1957 Housing Act of England), sleeping habits (sleeping alone or sharing) (25) and the degree of general crowding (number of family members per number of rooms in the home) (26, 27) have been positively correlated with the prevalence of scabies.

HOUSE STRUCTURE AND WATER SUPPLY: The latter has also been shown to be affected by the presence or absence of a piped water supply (26) the use of a private tap and to the type of housing structure (27). With respect to structure, good housing (i.e. modern housing built of bricks with closed, clean drainage) was associated with a decreased prevalence of scabies while poor quality housing (built of wattle or mud, hatched with grass and housing either a pit latrine or no latrine and no drainage).

In this study, personal hygiene was also shown to be associated with
scabies i.e. washing of body and clothes was shown to be an important factor in preventing the spread of scabies. Therefore, quantity of water supplied and convenient access to it can be seen to be important factors - as important as quality of water.

Leprosy and pyoderma were also positively correlated with overcrowding and the absence of a piped water supply (26).

6. Infectious Diseases

Tuberculosis has long been known as a disease closely associated with poverty, malnutrition and poor environmental conditions, and many studies have been done to assess the relative importance of poor housing amongst all these factors (Martin, 1976). The majority of the definitive studies were done considerably earlier than 1963 (the cut-off date of this literature review) and include the series of studies done in Edinburgh and Glasgow by Stein (1950-4) in which a clear association between the incidence of tuberculosis and severe overcrowding was shown.

Of the studies included in this review, two are concerned with infectious diseases other than tuberculosis i.e. cerebrospinal meningitis and rheumatic fever. In a study done in two areas of Africa in which epidemics of cerebrospinal meningitis occurred, Ghipponi et al (28) concluded that an increase in airborne bacteria is associated with poor ventilation, earth floors (as opposed to well constructed cement floors) and overcrowding. The latter was also shown to be correlated with an increased attack rate of meningitis.

An association between the prevalence of acute rheumatic fever (or rheumatic heart conditions) and degree of crowding (number of people sharing a bedroom) was shown by MacLaren et al in the "Soweto Study" (29). In discussing their results, the authors concluded that the root cause of the high prevalence of RHD in Soweto, almost certainly lies in the low socio-economic status of the population. As long ago as 1930, when the incidence of rheumatic fever was already declining in Britain and the United States, Glover (as cited in 29) stated that "the incidence of acute rheumatic disease increases directly with poverty, malnutrition, overcrowding and bad housing". Overcrowding has since been shown to be the most important factor in contributing to a high incidence of rheumatic heart disease. (29).

(b) Housing
6. Housing

The majority of low income housing in the Cape Town metropolitan area is under the control of the Cape Town City Council, the Cape Divisional Council ('coloured' and Asian housing) and the Western Cape Administration Board (African housing and Crossroads and KTC squatter camps).

This analysis deals primarily with housing which is administered directly by these local authorities, that is, the rented stock and the squatter camps. Council ownership schemes, which at any rate are in the minority and of a better quality, are for present purposes excluded.

Units to be analysed are therefore as follows:

City Council ('coloured') 35965
Divisional Council ('coloured') 22356
Administration Board (African) 16245 (excludes hostels)
Squatters: Divisional Council 2207
Admin Board 2300 (estimate)
TOTAL 79073

These units contain at least 53% of the 'coloured', Asian and African population within these local authority boundaries. (Total 'coloured, Asian and African population at 1980 census was 927 660. We assumed six people average per unit).

The following aspects of the house and the living environment are considered to be important in terms of their affect on health:

1. Water and sewage

<table>
<thead>
<tr>
<th>Authority</th>
<th>Outside toilets</th>
<th>Outside taps (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Council</td>
<td>2156</td>
<td>2116</td>
</tr>
<tr>
<td>Council squatters</td>
<td>2207</td>
<td>2207</td>
</tr>
<tr>
<td>Admin Board (2)</td>
<td>13800</td>
<td>13800 (estimate)</td>
</tr>
<tr>
<td>Admin Board squatters</td>
<td>2300</td>
<td>2300</td>
</tr>
<tr>
<td>TOTAL</td>
<td>20463</td>
<td>20463</td>
</tr>
</tbody>
</table>

% of stock 25.8

Notes: 1. Usually units constructed with outside toilets who have outside taps

2. Accurate information for African townships is difficult to
obtain. However over 80% of units are standard 51/6 houses which have outside toilets and taps.

3. Even though toilets are outside, except in the case of squatter camps, sewage is water borne. Water is also purified.

2. Electricity

<table>
<thead>
<tr>
<th>Authority</th>
<th>No of units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Council</td>
<td>4456</td>
</tr>
<tr>
<td>Administration Board</td>
<td>6500</td>
</tr>
<tr>
<td>Council squatters</td>
<td>2207</td>
</tr>
<tr>
<td>Admin Board squatters</td>
<td>2300</td>
</tr>
<tr>
<td>TOTAL</td>
<td>15463</td>
</tr>
<tr>
<td>% of stock</td>
<td>19,5</td>
</tr>
</tbody>
</table>

Note: 1. Most units were built without electricity, but connections can be made at the cost of the tenant (at present approx R600 per unit). It is assumed here that at most 40% of tenants would have done this.

3. Overcrowding
It is difficult to gauge the extent of overcrowding in 'coloured' and African areas in Cape Town but the problem is known to be serious. The following figures are samples from the 1980 census data:

PERSONS PER HABITABLE ROOM

- Bonteheuwel: 2,14
- Kalksteenfontein: 2,57
- Manenberg: 2,19
- Mitchells Plain: 1,37
- Valhalla: 2,73

Source: Cape Town's Housing Problem. Cape Town City Engineers Department, July 1983.

PERCENTAGE OF HOUSES WITH MORE THAN EIGHT PEOPLE

- Bonteheuwel: 21
- Factreton: 35
- Kalksteenfontein: 41
- Valhalla: 24
- Hanover Park: 22
- Lavendar Hill: 24

According to the Slums Act each person requires a minimum of 3.22 square meters of space.

Manenberg: 2.19 sq m
Valhalla Park: 2.65 sq m
Source: Ibid.

One reason for overcrowding is simply not enough houses. Another reason is that houses are of inadequate size. In relation to the 'coloured' population average family size is between three and 4.5 people (1) and African families are on the whole larger. This means that the average family will require a house of at least three bedrooms. However 87% of 'coloured' letting units in Cape Town have been built with two bedrooms or less, and 20% have only one bedroom. Similarly in the African townships the standard NE 51/6 has two bedrooms and a living room.

<table>
<thead>
<tr>
<th>Household size</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 1.5</td>
<td>1.23</td>
</tr>
<tr>
<td>1.5 - 3.0</td>
<td>20.49</td>
</tr>
<tr>
<td>3.0 - 4.5</td>
<td>45.90</td>
</tr>
<tr>
<td>4.5 - 6.0</td>
<td>21.31</td>
</tr>
<tr>
<td>6.0 - 7.5</td>
<td>11.07</td>
</tr>
</tbody>
</table>

Source: L. Loots

<table>
<thead>
<tr>
<th>'COLOURED' LETTING UNITS 01 REGION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 room</td>
</tr>
<tr>
<td>1 bedroom</td>
</tr>
<tr>
<td>2 bedrooms</td>
</tr>
<tr>
<td>3 bedrooms</td>
</tr>
<tr>
<td>4 bedrooms</td>
</tr>
</tbody>
</table>

Source: L. Loots

(1) Lieb Loots "Preliminary Estimates of Housing Demand and Supply in Greater Metropolitan Area", 1981, University of Western Cape.
4. **Internal Environment**

The internal environment is determined by a number of factors, of which some have already been mentioned i.e. overcrowding and the lack of electricity say for space heating.

One of the major factors affecting the metabolic comfort of the material environment of any dwelling is the manner of construction and specific materials used.

Centrally, the housing stock for the low income groups is poorly constructed with an attempt to minimise the amount of materials i.e. by using brick-on-edge,

1. Instead of an external 280 mm canty brick wall, a brick-on-edge cavity wall (200mm) or a wall without a cavity is used. In the Cape this is particularly problematic with the long wet winters. Walls without cavities allow the damp to penetrate to the interior skin.

2. The concrete floor slabs are minimised to 50mm thick and are often built without DPC (damp proof coursing). With the high water table on the Cape flats, rising damp is frequently experienced. No floor finishes/covering is provided.

3. Roofs are corrugated asbestos cement without ceiling. Asbestos cement allows for a high transferrance of temperatures.

4. Natural ventilation. Houses are generally built with air bricks and the required percentage of natural ventilation by windows, but because of windy conditions it is found that the air bricks are blocked up and windows rarely opened. Hence, the turnover of fresh air is not very high.

The following example serves to illustrate the mean internal environmental temperatures of a standard semi-detached house on the Cape flats. It is one of the case studies surveyed by the students from the School of Architecture, UCT:

The house has three rooms, a kitchen and an outside W.C. The occupancy is eight people. The exterior walls are 150mm brick-on-edge with no cavity. The concrete floor slab is 50mm. A corrugated asbestos cement roof if used with no ceiling.

The results of the table below illustrate the mean internal environmental temperatures over 24 hours of the day on 10 specific days of the year, ranging from mid-summer (column 1) through autumn to mid-winter (column 6) through spring and back to mid-summer.
The study takes the following factors into account:

1. The building material elements and their insulation values
2. The occupancy factor of the dwelling: the number of occupants and their activities over 24 hours of the day.
3. Solar intensity in the dwelling from between 05h00 to 19h00 over the 10 specific days of the year.
4. A ventilation constant
5. Hourly temperatures for Cape Town over 24 hours for the 10 specific days of the year.
HEAT TRANSFER ANALYSIS

A. MEAN INTERNAL TEMPERATURES (°C)

<table>
<thead>
<tr>
<th>HOUR</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
<th>09</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>22.3</td>
<td>22.6</td>
<td>21.7</td>
<td>21.3</td>
<td>16.9</td>
<td>6.3</td>
<td>16.6</td>
<td>17.4</td>
<td>17.1</td>
<td>17.2</td>
<td>17.4</td>
<td>17.3</td>
<td>17.4</td>
<td>17.6</td>
<td>17.7</td>
<td>17.6</td>
<td>17.7</td>
<td>17.8</td>
<td>17.8</td>
<td>17.1</td>
<td>16.9</td>
<td>16.6</td>
<td>16.4</td>
<td></td>
</tr>
<tr>
<td>PM</td>
<td>02.5</td>
<td>22.6</td>
<td>21.7</td>
<td>21.3</td>
<td>16.9</td>
<td>6.3</td>
<td>16.6</td>
<td>17.4</td>
<td>17.1</td>
<td>17.2</td>
<td>17.4</td>
<td>17.3</td>
<td>17.4</td>
<td>17.6</td>
<td>17.7</td>
<td>17.6</td>
<td>17.7</td>
<td>17.8</td>
<td>17.8</td>
<td>17.1</td>
<td>16.9</td>
<td>16.6</td>
<td>16.4</td>
<td></td>
</tr>
</tbody>
</table>

B. COMFORT / DISCOMFORT ZONES

C. GRAPH OF HABITABLE & NON-HABITABLE TIME (% of YEAR)

- --- MEAN HABITABLE (%) OF YEAR 42.3%

WITHIN METABOLIC COMFORT ZONE (19-27°C)
ABOVE METABOLIC COMFORT ZONE (> 27°C)
SUMMARY OF RESULTS WITH EXAMPLES OF PERTINENT CONDITIONS IN LOW-INCOME HOUSING CAPE TOWN METROPOLITAN AREA

<table>
<thead>
<tr>
<th>HOUSING PARAMETER</th>
<th>ASSOCIATED HEALTH PROBLEM</th>
<th>EXAMPLES OF PERTINENT LOCAL CONDITIONS</th>
</tr>
</thead>
</table>
| INADEQUATE/Poor Water Supply | * Gastro-enteric Diseases
* Increased Morbidity
* Increased Mortality
* Skin Infections | 20,423 units have an outside tap as their only source of water |
| Overcrowding | * Respiratory Diseases -
URTI & LRTI
* Diarrhoeal Disease
* Morbidity
* Mortality
* Skin Infections
* Infectious Disease
eg Meningitis
Tuberculosis
Rheumatic Fever | Between 21% and 41% of homes house more than 8 people |
| Sewage/Toilet Facilities (excreta disposal) | * Gastro-enteric Disease
* Diarrhoea
* Bronchitis
* Child Morbidity & Mortality | The average space per person in Manenberg and Valhalla Park is 2.42 sq m. This is 0.8 sq m short of minimum requirements cited in the Slums Act |
| Poor Sanitation | * Bronchitis
* Gastrointestinal Disease
* Morbidity
* Mortality | 20,463 units have outside toilets |
| Internal Environment | * Pollution by indoor burning of fuel with inadequate ventilation
* Thermal environment (temperature and relative humidity)
* Allergic Asthma
* Disturbance of body thermoregulation | Usually units constructed with outside toilets also have outside taps |
| | | 15,463 units have no electricity and therefore make use of gas and wood burning indoors |
| | | The mean internal environmental temperatures of a standard semi-detached house in the Cape Flats lie well outside of the "Human Comfort Zone" - being too hot in summer and too cold in winter |
METHODOLOGICAL PROBLEMS IN THE STUDY OF HOUSING AND HEALTH

As stated earlier, a great deal of literature initially scrutinised was rejected for this review. Methodological deficiency was the most important reason for rejection, although not the only one. Characteristically the problems included:
- poor definition of variables;
- arbitrary selection of samples, unrepresentative of the general population;
- no control group;
- no checks for reliability and
- no attempt to analyse results.
Thus, the studies rejected were those which were 'unscientific' and in which conclusions reached were consequently unreliable.

There were, in addition, a number of methodological problems that recurred even amongst the studies included. Although it is beyond the scope of this paper to deal with these problems at great length, it is important that they be raised so that anyone undertaking studies in the area of housing and health may be wary of what appear to be common pitfalls.

The most important of these problems related to
1. the type of study;
2. the use of control groups;
3. definition of variables;
4. checks for reliability of data.

1. Type of Study
12 of the 30 studies included were cross-sectional surveys. Here, cause and effect are measured simultaneously and both measurements relate to the same point in time. Consequently, cross-sectional studies are most appropriate for studies of permanent (or reasonably permanent) characteristics of the individual, so that his status with respect to the cause measured at the same time he has the disease, has a high probability of reflecting his status at the time the disease was included (Milner 1962, page 20).

Since in the study of housing and health, neither the postulated cause (housing) nor the effect (health) is permanent nor static, a cross sectional study offers little possibility of establishing a conclusive direction of causality. Indeed, because of the 'once-off'
nature of the study, the fact that housing is but one of a number of variables in a causal web (and in some cases is perhaps not a very important element) may well be obscured.

Nevertheless, a cross-sectional study is certainly an easier and a more economical undertaking, and may well point to important associations in a situation at a given time. Much information is valuable in pinpointing problems for more precise investigation.

2. Control groups
Although controls are never needed in surveys in which hypotheses are not tested (Abramson 1979) a study of the housing-health linkage is by implication an attempt to support a hypothesis of causation and therefore should include a control group. Measurement of a test population alone without a control, cannot reveal the true nature and extent of the influence of housing on health.

Only six of the 30 included studies made use of a control group. This problem may possibly be explained on the following grounds:
(a) An ideal control group is one which is exactly the same as the study group in all respects except for the characteristics which are to be studied (Abramson, 1979, page 49). Because housing is inextricably linked with social class, income and a whole host of other socio-economic variables, it is usually nigh impossible to find a control in which all variables except housing are constant. Groups of similar socio-economic status tend also to live in housing of a similar standard.
(b) Inclusion of a control group in a study is often too expensive and time consuming

Consequently studies which did not make use of control groups were not automatically judged invalid and excluded. Those that were methodologically sound in all other respects were included, but one should be aware that conclusions reached in these studies are subject to this imperfection.

3. Definition of Variables
Incomplete or absent definition of variables and of scales of measurement was a problem common to nine of the included studies. Although in each of these cases the studies were included on the basis of good scientific method in every other respect, the deficiency evokes the strongest criticism. It is easily avoidable.
Each of the variables measured in a study should be clearly and explicitly defined. However full of insight an investigator's hypotheses and conclusions may be, they remained tenuous unless supported by observations objectively recorded in quantitative terms. Unless this is done, there can be no assurance that the findings would be repeated if a similar study were undertaken by a different investigator.

4. Checks for Reliability of Data

High reliability in data collection does not mean that a study is automatically satisfactory. Moreover, the measurement of a phenomenon should not be given up simply because there is some degree of unreliability. Nevertheless, measures should always be taken to reduce variation to reasonable limits and investigators should be aware of the sources of variation.

In a number of studies included here, the investigators documented their attempts to reduce variability i.e. checks included standardisation of measurement, the use of more than one observer for clinical examination of individuals, the use of multiple samples in the case of dust measurements and bacterial culture plates, checks for non-responder bias in cohort studies and use of a computerised demographic profile system in a study which used census data.

However the majority of the studies did not indicate whether or not checks for reliability had been undertaken.

STATISTICAL METHOD AND ANALYSIS OF RESULTS

The method used to analyse results in the included studies may be divided into three categories:

(a) Descriptive Analysis: This includes the use of frequency distributions (in graphic or tabular form) and contingency tables (without the application of further statistical tests).

(b) Inferential Analysis: This includes any statistical claim for significance through the use of chi squared, the t test, f test, correlation coefficient (r), etc.

(c) Exploratory Analysis: This includes the use of any of the techniques of multivariate analysis (e.g. the automatic intervention detection techniques)

In general the purpose of statistical analysis beyond descriptive
analysis is to test whether the data collected provides statistical evidence in favour of the hypotheses implicit in the idea of collecting the data. The studies included in this review were for the most part sound in this area i.e. the methods chosen were appropriate to the type of data. In only four of the studies was descriptive analysis the only form of analysis used, but in each of these conclusions reached were in congruence with the overwhelming body of other medical literature.

Various techniques of multivariate analysis were used in another four studies. Although these techniques are not widely used by investigators, and although they do not provide a short cut solution to the problem of causal interpretation, they might offer the most appropriate way of clarifying the housing-health linkage. Multivariate analysis (more specifically the AID's) can streamline the production of information about the interrelationships which exist among a whole number of factors. This would be important in determining to what extent housing (amongst a whole net of factors) plays a role in determining the health of an individual.

CONCLUSION

At the outset of this literature search consideration of the ways in which housing quality differs and the ways in which patterns of ill-health are distributed, led to a number of expectations regarding the role of housing in the generation of ill-health. Among the important housing items considered were crowding, sharing of facilities, inadequate water and facilities for keeping clean and structural decay. It was moreover expected that certain categories of disease may be particularly affected by the housing differences: inter alia, acut respiratory infections, communicable diseases like tuberculosis and gastrointestinal diseases.

As the study unfolded a number of features emerged. Firstly, it is clear that housing, albeit an important ingredient, is invariably just one of a multiplicity of socio-economic conditions affecting health. Health conditions are strongly related to social factors such as social class, level of education and unemployment, as well as to physical variables like air pollution, injury producing hazards and housing conditions. And in searching for implications of finding strong correlations between housing and health, one becomes aware that
that modification of the physical environment can only have a maximum effect on health if accompanied by other socio-economic improvements.

Secondly, because of the complex web of adverse socio-economic conditions found in areas characterised by poor housing and because of the lack of adequate and reliable health records in such areas, the study of the direct housing health linkage is difficult. Extracting clear associations from the numerous confounding variables may in fact be impossible. Consequently, literature which describes and analyses the relationship in a detailed measureable fashion is very limited.

However despite these complexities the correlations shown in the results of the studies chosen are not insignificant and substantially reinforce what common sense would lead one to expect—certainly, one would not expect good health in poor housing conditions.

The question which one is ultimately forced to ask are how much more research of this nature needs to be done, how many more correlations need to be scientifically proven, how useful is this type of research, how much more useful will it be if extended?

From a cost benefit point of view, it may be reasonable to contend that no new research need be carried out. Enough 'scientific' information is already available to warrant expenditure on action. Despite the fact that one recognises that housing is not the primary or sole determinant of health, the information we have does point to the possibility of positive physical intervention. Such intervention of course includes not only the control of population density and the provision of adequate water supplies and waste removal systems (which are mandatory!) but also areas of planning and design improvements directed at the attainment of better health e.g. provision of finished floors, electricity, bathing facilities. Intervention of this nature becomes crucial when one considers the poor housing conditions which presently characterise the Western Cape (including the vast squatter camps, devoid of infrastructure) and the coexistent high incidence of preventable diseases.

In the light of this the medical profession should view with alarm any attempts to decrease state expenditure on housing and particularly, any attempts to minimise standards. At the very least the results shown here point to the need for the definition of
minimal housing standards compatible with a healthy community. This would also seem to be in line with the recommendations of the Health Services and Facilities Plan and perhaps would be an appropriate undertaking for the National Health Advisory Committee.

We assume however that such a project would not be undertaken by the medical profession alone but would include the participation of representatives of the communities affected by poor housing and by ill-health.
HOUSING AND HEALTH - LITERATURE CHECK-LIST

Title

Authors

Journal

Date

Type of Study

Objective

Study Population

Who

Sample

Method of Sampling

Size of Sample

Control Group (yes/no)

Variables Matched

Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SEQUENTIAL BIBLIOGRAPHY OF LITERATURE INCLUDED IN THE STUDY

(See Table of Results)

1. Holland WW, Halil T, Bennet AE, Elliot A
Factors Influencing the Onset of Chronic Respiratory Disease

2. Sims DG, Cownham MAP, McCullin J, Gardner PS
Respiratory Syncitial Virus Infection in North East England

3. Solufwe GO
The Effect of Housing Conditions on Prevalence of Bronchitis,
Bronchiditis and Pneumonia in Lagos, Nigeria

4. Solufwe GO
Smoke Pollution in Dwellings of Infants with Bronchopneumonia
Arch Env Health 1968; 16: 670-72

5. Melia RJW, Florey C du V, Altman DG, Swan AV
The Association between Gas Cooking and Respiratory Disease in Children
(a) BMJ 1977; ii 155-69
(b) Int J Epid 1979; 8(4): 333
(c) Int J Epid 1982; 11: 155-169

6. Spieksma F Th M
The House Dust Mite
Thesis 1967 (Leiden)

7. Hirsch SR, Sosman JA
A One-Year Survey of Mould Growth Inside 12 Homes
Ann Allergy 1976; 36: 233-239

8. Kourany M, Vasques MA
Housing and Certain Socio-encironmental Factors and Prevalence of Enteropathogenic Bacteria Among Infants with Diarrhoea Disease in Panama

9. Oduntan SO
Housing and the Health of Nigerian Children

10. Moore HA, De La Cruz E, Vargas-Mondez O
Diarrhoeal Disease Studies in Costa Rica – the influence of sanitation upon the prevalence of intestinal infection and diarrhoeal disease
Amer J Epid 1965; 83(2): 162-84

11. Rao CK, Krishnaswami AK, Gupta SR et al
Prevalence of Amoebiosis and Other Intestinal Parasitic Infections in a Selected Community
Ind J Med Res 1971; 59(9): 1365-73

12. Freij L, Wall S
Quantity and Variation in Morbidity: THADI Analysis of the Occurrence of Gastro-enteritis among Ethiopian Children
13. Reibenstein A, Boyle J, Odorof CL, Kunitz SJ
Effects of Improved Sanitary Facilities on Infant Diarrhoea in a Hopi Village
Pub Health Rep 1969; 84(12): 1093-1097

14. Van Zijl @J
Studies on Diarrhoeal Diseases in Seven Countries
Bull WHO 1966; 35:249-262

15. Wolff HL, Van Zijl WJ, Roy M
Houseflies, the Availability of Water and Diarrhoeal Diseases

16. Brennan ME, Lancashire R
Association of Childhood Mortality with Housing Status and Unemployment
J Epid Comm Health 1978; 32:28-33

17. Patel M
Modelling Determinants of Health

18. Collins JJ, Kasaf HS, Holland WW
Environmental Factors in Child Mortality in England and Wales
Amer J Epid 1971; 93:10-22

19. Wamber D, Piland N
Effects of Improved Housing on Health in South Dos Palos, California
Health Serv Rep 1973; 88(1):47-58

20. Holme BO, Winding O
Housing, Hygiene and Health
Arch Env Health 1977; 52(2):86-93

Zones of Excess Mortality in Massachusetts

22. Greenberg MA, Nelson KE, Carnow BW
A Study of the Relationship between Sudden Infant Death Syndrome and Environmental Factors

23. Graham GG
Environmental Factors Affecting the Growth of Children

24. Essen J, Fogelman K, Mean J
Childrens' Housing and their Health and Physical Development
Child Care, Health and Development 1978; 4(6):357-69

25. Gulati PV, Singh KP, Broganza C
The Role of Socio-Cultural and Environmental Factors in the Cause of Scabies
Int J Derm 1977; 16(4):281-3

26. Bhavsar BS, Mehta NR
Impact of Home Sanitary Conditions on Skin Diseases Prev in Amongst School Children in the Surat District, South Guj r
27. Masaawe AEJ, Nsanumuhire M
Bacterial Skin Infections in Preschool and School Children
Arch Derm 1975; 111(1):1312-6

A Study of Bacterial Air Pollution in an Arid Region of Africa
Affected by Cerebrospinal Meningitis
Bull WHO 1971; 45:95

29. McLaren MJ, Hawkins DM et al
Epidemiology of Rheumatic Heart Disease in Black School Children
in Soweto
BMJ 1975; 3:474-78

30. Gorosomov MSH
The Physiological Basis of Health Standards for Dwellings
Pub Health Papers 33 (Geneva WHO 1968)
American Public Health Association - Program Area Committee on Housing
Basic Health Principles of Housing and its Environment

Bhavsar BS, Mehta NR
The Impact of Home Sanitary Conditions on Skin Diseases Prevalent amongst School Children in Surat District, South Gujarat

Brennan ME, Lancashire R
Association of Childhood Mortality with Housing Status and Unemployment
J Epid and Comm Health 1978; 38:28-33

Bribord K, Brubaker PE, Gay BG, French J
Exposure to Halogenated Hydrocarbons in the Indoor Environment
Env Health Persp 1975; 11:215-220

Collins, Kasap, Holland
Environmental Factors in Child Mortality in England and Wales
Amer J Epid (1971); 93:10-22

Coovadia, H
The Struggle for Health and Housing
The People and the Professionals: Conference Papers, UCT Medical Students Council 1981; 139-145

Editorial
Housing
SAMJ 1945; April 14

Essen J, Fogelman K, Head J
Childrens' Housing and their Health and Physical Environment
Child Care, Health and Development 1978; 4(6):357-69

Freij L, Wall s
Quantity and Variation in Morbidity: THAID analysis of the occurrence of gastroenteritis among Ethiopian children

Ghipponi J, Darrigol J, Skaloxa R, Cxjetanovic B
Study of Bacterial Air Pollution in an arid region of Africa affected by Cerebrospinal Meningitis
Bull WHO 1971; 45:95

Gilmurray J, Riddell R, Sanders P
The Struggle for Health
Rhodesia to Zimbabwe Series, Mambo Press, 1979

Gorosovom JSH
The Physiological Basis of Health Standards for Dwellings
Pub Health Papers No 33 (Geneva:WHO 1968)

Graham GG
Environmental factors affecting the growth of children

Greenberg MA, Nelson KB, Carnow BW
A Study of the Relationship between Sudden Infant Death Syndrome and
Environmental Factors

Gulati PV, Singh KP, Braganza C
The Role of Socio-Cultural and Environmental Factors in the Cause of Scabies
Int J Dermatology 1977; 16(4):281-3

Higgins TS
Housing Conditions
SAMJ 1935; October 26:714-716

Hirsch SR, Sosman JA
A one year survey of Mould Growth inside Twelve Homes
Ann Allergy 1976; 36:233-39

Holma B, Winding O
Housing, Hygiene and Health: A Study in Old Residential Areas in Copenhagen
Archives of Environmental Health 1977; 32(2):86-93

Jacobs M, Stevenson G
Health and Housing: A Historical Examination of Alternative Perspectives
Int J Health Services 1981; 1(1):105-22

Jenkins GD, Tuthill RW et al
Zones of Excess Mortality in Massachusetts
New Eng J Med; 296(23):354-6

Kourany M, Vasques MA
Housing and Certain Socio-environmental factors and Prevalence of Enteropathogenic Bacteria among Infants with Diarrhoeal Disease in Panama

Maister M
Social Welfare as a Public Problem from the Housing and Nutrition Aspect
SAMJ 1940; Jan 13:7-11

Martin AE
Environment Housing and Health

Martin AE, Kaloyanova F, Maziarka S
Housing, the Housing Environment and Health: An Annotated Bibliography

Masawe AEJ, Nsanzumvhire H, Mhaly F
Bacterial Skin Infections in Preschool and School Children
Arch Derm 1975: 111(10):1312-6

Mason JP, Stephens B
Housing and Health: An analysis for Use in the Planning, Design and Evaluation of Low Income Housing Programmes
The Co-operative Housing Foundation: A Study Prepared for the Office of Housing, November 1981

Mathison DA, Stevenson DD, Simon KA
Asthma and the Home Environment
McLaren MJ, Hawkins DM et al
Epidemiology of Rheumatic Heart Disease in Black School children in Soweto
BMJ 1975; 3:474-78

Melia RJW, Florey CDV, Altman DG, Swan AV
Association between Gas Cooking and Respiratory Disease in Children (Parts I, II and III)
I BMJ 1977; (ii):149-52
II Int J Epidemiology 1979; 8(4):333
III Int J Epidemiology 1982; 11:155-169

Moore HA, De la Cruz E, Vargas-Mendez O
Diarrhoeal Disease Studies in Costs Rica: the influence of sanitation upon the prevalence of intestinal infection and diarrhoeal disease
Amer J Epid 1965; 82(2):162-84

Nelson JD et al
Endemic Shigellosis: A Study of Fifty Households
Amer J Epid 1967; 86:683-89

Oduntan SO
Housing and the Health of Nigerian Children

Perry H
Some Aspects of Current Housing Problems
SAMJ 1946; April 13:172-4

Patel M
Modelling Determinants of Health

Rao CK, Krishnaswami AK, Gupita SR et al
Prevalence of Amoebiosis and other Intestinal Parasitic Infections in a Selected Community
Ind J Med Res 1971; 59(9):1365-73

Richardson Stephen A
The Background histories of Schoolchildren severely malnourished in Infancy
Advances in Paediatrics 1974; 21:167-95

Rubenstein A, Boyle J, Odoroff CL, Kunitz SJ
Effects of Improved Sanitation on Infant Diarrhoea in a Hopi Village
Pub Health Rep 1969; 84(12):1093-97

Sims DE, Downham MAP, McCullin J, Gardner PS
Respiratory syncial Virus in North East England
BMJ 1976; 2:1095-1098

Solufwe GO
Effect of Housing Conditions on Prevalence of Bronchitis, Bronchiolitis and Pneumonia in Lagos, Nigeria

Solufwe GO
Pollution in Dwellings of Infants with Bronchopneumonia
Arch Env Health 1968; 16:670-72
Spieksma FTM
The House Dust Mite
Thesis 1967 (Leiden)

Stern JM
The National Health Facilities Plan
The People and the Professionals: Conference Papers
UCT Medical Students Council 1981; 88-98

Van Zijl WJ
Studies on Diarrhoeal Diseases in Seven Countries
Bull of WHO 1966; 35:249-62

Wamben Denis B, Piland Neil F
Effects of Improved Housing on Health in South Dos Palos, California
Health Services Reports Jan 1973, 88(1), 47-58

Wilner DM, Walkley RP, Pinkerton TC, Tayback M
The Housing Environment and Family Life
The Johnne Hopkins Press, Baltimore 1969

Wolfe HL, Van Zijl WJ, Roy M
Houseflies, the Availability of Water and Diarrhoeal Diseases
Bull of WHO 1969; 41:952-9

World Health Organisation
Appraisal of the Hygienic Quality of Housing and Its Environment
Tech Rep Series No 353; Geneva:WHO 1967

WHO
Development of Environmental Health Criteria for Urban Planning
Tech Rep Series No 511; Geneva:WHO 1972

WHO
Public Health Aspects of Housing
Tech Rep Series No 225; Geneva:WHO 1961

WHO
Uses of Epidemiology in Housing Programmes and in Planning Human
Settlements
Tech Rep Series No 544; Geneva:WHO 1974
These papers constitute the preliminary findings of the Second Carnegie Inquiry into Poverty and Development in Southern Africa, and were prepared for presentation at a Conference at the University of Cape Town from 13-19 April, 1984.

The Second Carnegie Inquiry into Poverty and Development in Southern Africa was launched in April 1982, and is scheduled to run until June 1985.

Quoting (in context) from these preliminary papers with due acknowledgement is of course allowed, but for permission to reprint any material, or for further information about the Inquiry, please write to:

SALDRU
School of Economics
Robert Leslie Building
University of Cape Town
Rondebosch 7700